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Typical Mortar Recoil Forces 
for Spherical Aerial Shell Firings[a] 

K. L. Kosanke and L. Weinman 
 

(Included in the text of this article are a series of 
notes. These notes present ancillary information 
that may be of interest to some readers but are not 
strictly needed within the context of this article. 
Thus readers should feel free to ignore the notes 
unless they desire more information.) 

One of the more common requests for infor-
mation regards the recoil force produced when 
aerial shells are fired from mortars. Generally the 
concern is whether some support structure (e.g., 
roof top, platform or barge deck) will safely ac-
commodate the dynamic load produced as shells 
of various sizes are fired from mortars placed up-
on the support structure. Providing a precise an-
swer can be a complex engineering problem, re-
quiring information that is not readily available. 
However, providing reasonable estimates for the 
recoil forces produced by the firing of typically 
performing aerial shells is a relatively easy matter. 
This article provides those approximate values for 
typical 3- through 12-inch (75- through 300-mm) 
spherical aerial shell firings. (These values are 
only for single break spherical shells; they are not 
for cylindrical shells or for so-called stacked, 
double-bubble, or peanut spherical shells.) 

Pressure is defined as the force applied per unit 
area, thus in the English system it has units such 
as pounds (force) per square inch (area). Accord-
ingly, to calculate the total force (F) produced by 
a pressure acting on some surface, simply multi-
ply the pressure being applied (P) by the area (A) 
over which it is acting, i.e. 

 F = P  ×  A  (1) 

In the case of an aerial shell firing, if P is the 
pressure developed inside the mortar[b] and A is 
the inside cross-sectional area of the mortar, a rea-
sonable estimate of recoil force can be calculated 
using equation 1.[c] There is no net contribution to 
recoil force produced by the pressure acting radi-
ally on the inside walls of the mortar. This is be-
cause the force against each small portion of mor-
tar wall is balanced by an equal but opposite force 

on the portion of mortar wall directly across from 
it.[d] Accordingly, all that is needed to produce the 
estimates of recoil force is knowledge of the pres-
sure profile in the mortar (i.e., internal mortar 
pressure as a function of time) and the inside 
cross-sectional area of the mortar (calculated us-
ing the internal diameter of the mortar). 

Figure 1 illustrates internal mortar pressure as 
a function of time during the firing of a typical 4-
inch (100-mm) aerial shell. First there is an ex-
tended period of time (t0 to ti) during which there 
is effectively no pressure rise inside the mortar. 
This length of time is commonly 0.01 to 
0.02 second. This corresponds to the time taken 
for fire to spread among and ignite the grains of 
lift powder, before there is sufficient gas produc-
tion to cause a detectable pressure rise in the mor-
tar. After that, there is a rapidly accelerating in-
crease in mortar pressure up to some peak value, 
generally occurring over a period of 0.005 to 
0.01 second (ti to tp).

[e] Next, as the shell acceler-
ates upward (increasing the volume below the aer-
ial shell) and the rate of gas production begins to 
lag, mortar pressure typically drops during the 

 

Figure 1.  A somewhat typical internal mortar 
pressure profile during the firing of an aerial 
shell. 
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time before the shell exits the mortar (tp to te). 
This pressure drop generally continues for 0.005 
to 0.01 second.[f] Finally, the exiting of the shell 
causes an even more precipitous drop in mortar 
pressure back to ambient levels over a time period 
of 0.005 to 0.01 second (te to tf). The total duration 
of the pressure pulse (ti to tf) typically ranges from 
0.02 to 0.03 second. 

While the pressure developed in mortars dur-
ing a shell firing does depend on shell size, both 
the general shape of the pressure profile and its 
duration are mostly independent of shell size.[g] 
Peak mortar pressures were measured during the 
firing of 136 spherical aerial shells (ranging in 
size from 3 to 12 inches [75 to 300 mm]) and were 
found to be well fitted by a simple linear relation-
ship with shell size.[1] Specifically, the peak pres-
sure was found to increase by approximately 
13.6 psi per shell inch (94 kPa/25 mm), as is 
shown in column 2 of Table 1. Using equation 1, 
these peak pressures can be converted to peak re-
coil forces, simply by multiplying peak pressure 

by the inside cross-sectional area of the mortar, 
see columns 3 and 4 of Table 1. 

For most support structures (e.g., a reasonably 
substantial building roof) the response of the 
structure to the recoil force of a mortar firing will 
not be proportional to the peak force but rather to 
the impulse delivered.[i] (The impulse delivered is 
equal to the product of the average force exerted, 
times the total duration of the force.[j]) In testing it 
has been found that the average recoil force is ap-
proximately 45% of the peak force, mostly inde-
pendent of shell size. Accordingly, the average 
force reported in column 5 of Table 1 is just 45% 
of the peak force value for that size shell in col-
umn 4. It has also been found that the typical du-
ration of the recoil force is approximately 
0.025 second.[k] Thus the recoil impulse for each 
size of typical spherical shell (column 6 of Table 1) 
is the average pressure value of column 5 multi-
plied by 0.025 second. 

Note that the mortar recoil impulse values 

Table 1.  Mortar Pressure, Recoil Force and Impulse for Various Size Aerial Shell Firings. 

Mortar Peak Mortar Peak Average  Equivalent 
Size [ID] Pressure (i) Area (ii) Force (iii) Force (iv) Impulse (v) 4 foot drop (vi) 

(in.) (mm) (psi) (in.2) (lbf) (lbf) (lbf s) (lbf) 

3.0 75 41 7.1 290 130 3.3 7 
4.0 100 54 13. 700 320 7.9 16 
5.0 125 68 20. 1,400 630 16 32 
6.0 150 82 28. 2,300 1000 26 52 
8.0 200 106 50. 5,300 2400 60 120 

10.0 250 136 79. 11,000 5000 120 240 
12.0 300 163 110. 18,000 8000 200 400 

i) From reference 1, to the nearest 1 psi. Note to convert from psi to kPa, multiply by 6.9. 

ii) Mortar Area,  A  =  π × d2/4, where d = internal mortar diameter. Note to convert from in.2 to cm2, multiply by 
6.4. 

iii) Peak Force,  F  =  (Peak Pressure) × (Mortar Area) = P  ×  A. The values of peak force are reported to only two 
significant figures. Note to convert from lbf (pound force[h]) to N, multiply by 4.45. 

iv) In examining a number of mortar pressure profiles, the average force exerted over the duration of the mortar’s 
recoil was typically found to be approximately 45% of the peak force produced. The value for each average 
force in Table 1 is equal to 45% of the Peak Force for that size shell and is reported to only two significant fig-
ures. Note to convert from lbf to N, multiply by 4.45. 

v) Impulse  =  (Average force) × (Typical recoil duration), where the typical duration was found to be approxi-
mately 0.025 second. The values of impulse are reported to only two significant figures. Note to convert from 
lbf·s to N·s, multiply by 4.45. 

vi) This is the weight of a solid object that, if dropped from a height of 4-feet (1.2 m) on to the support structure, 
will deliver the same impulse as the firing of that size of a typical single-break spherical aerial shell. This 
weight in pounds is numerically equal to twice the impulse given in column 6 of Table 1. Values are given to 
two significant figures, but rounded to next largest pound. (See note k for an explanation.) Note to convert from 
lbf to kg, multiply by 2.2. 
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(column 6 of Table 1) approximately double for 
each increase in shell size. This means that the 
stress delivered to a support structure also more or 
less doubles with each incremental increase in 
shell size. That is to say, the firing of a 5-inch 
(125-mm) spherical shell from a mortar will typi-
cally deliver about twice the stress (impulse) as 
firing a 4-inch (100-mm) shell. While this is use-
ful information, it says nothing about whether the 
support structure is sufficiently strong to safely 
withstand the intended size of shell firings. To 
make that determination, a structural engineer will 
need to be consulted to consider data such as in 
Table 1. However, to provide points of compari-
son with which most readers will be familiar, col-
umn 7 has been included in the table.[l] These are 
solid weights that, when dropped from a height of 
four feet (1.2 m), will deliver approximately the 
same impulse as will typically be produced by the 
firing of that size single-break spherical aerial 
shell. 

For example, from the last column of Table 1, 
if the support structure can safely withstand the 
drop of a fairly rigid[m] 7-pound (3.2-kg) mass 
from a height of four feet (1.2 m), then it can 
probably survive the firing of a typical 3-inch (75-
mm) single-break spherical aerial shell. If you can 
do the same with a 400 pound (182 kg) rigid 
mass, then the structure can probably survive the 
firing of a typical 12-inch (300-mm) spherical 
aerial shell. However, it is important to consider 
that: 

1) It is implicitly assumed that the size (diameter) 
of the mass that is dropped is approximately 
the same as that of the bottom of the mortar 
being considered. 

2) The data in Table 1 is for the firing of typical 
single-break spherical aerial shells,[a] which 
means that roughly half of the shell firings 
must be expected to produce forces greater 
than those presented in Table 1. And some 
properly functioning single-break spherical 
shells will produce twice the average recoil 
force. 

3) The values in Table 1 do not take into consid-
eration the possibility of aerial shell malfunc-
tions, which could produce forces substantially 
in excess of those listed. 

4) It is a standard engineering practice to design-
in a safety margin of at least two or three. 

Although this article provides some approxi-
mate guidance regarding mortar recoil forces[n] 
and the needed strength of support structures for 
the safe firing of single-break spherical aerial 
shells,[o] note that neither author is a mechanical 
or structural engineer. Thus a mechanical or struc-
tural engineer needs to be consulted prior to rely-
ing on the information presented in this article. 
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Notes 

a) Recent measurements of the mortar pres-
sures produced upon firing spherical aerial 
shells suggest that some manufacturers are 
using significantly more lift powder. The re-
sult is that the previously reported typical 
mortar pressures[1] may presently under es-
timate the pressures now typically being 
produced. If this is now the case, then the 
“typical mortar recoil forces” being reported 
in this article are also under estimates. 

b) In this case it is gauge pressure (i.e., the 
pressure over and above atmospheric pres-
sure), and not absolute pressure, that is used 
to calculate the resulting force. 

c) At least two other factors act to slightly mod-
ify the recoil force predicted by equation 1. 
First, upon firing an aerial shell, there is an 
upward rush of gas escaping through the gap 
between the shell’s casing and the mortar 
wall. Some of the motion of this gas flow is 
communicated to the wall of the mortar. The 
result of this first factor is that a small up-
ward force is produced that slightly counter-
acts the much more substantial downward 
recoil force being produced. The second fac-
tor is a result of the constriction provided by 
the aerial shell that acts somewhat as a plug 
nozzle in a rocket motor, such that some 
added thrust may be produced by the escap-
ing lift gas (i.e., the thrust coefficient may be 
slightly greater than 1.0). The result of this 
second factor is that a little greater down-
ward force may be produced. For the pur-
pose of this article, both of these minor ef-
fects are ignored. 

d) The net result of the balanced (equal and 
opposite) forces on the mortar wall is to 



 
Page 746 Selected Pyrotechnic Publications of K. L. and B. J. Kosanke 

produce a tensive force (called hoop stress) 
in the wall of the mortar. This is only a con-
cern when that force is greater than the ten-
sile strength of the mortar, in which case the 
mortar will burst. For information on calcu-
lating burst strength of pipes (i.e., mortars), 
see any standard engineering text or any edi-
tion of the Machinery’s Handbook (pub-
lished by Industrial Press, Inc.) under 
“strength of materials”. 

e) Some have attributed this effect to so called 
“choked flow”, apparently thinking that 
once the velocity of escaping gas reaches the 
speed of sound and no longer increases, the 
gas flow ceases to increase even as the pres-
sure continues to increase. There is a limit to 
gas flow velocity at the point of constriction 
posed by the aerial shell, when that flow ve-
locity reaches the speed of sound under the 
conditions in the mortar. Nonetheless, be-
cause the density of the gas continues to in-
crease with pressure, the mass flow rate con-
tinues to increase even though the velocity 
of the flow does not. (For more information 
about choked flow, see reference 3.) 

f) With some types and granulations of lift 
powder, the rate of rise in mortar pressure 
will be less, and the aerial shell may exit the 
mortar while the pressure is still increasing. 
In that case there will be no time interval be-
tween the peak recorded pressure and the 
exit of the shell (i.e., the time from tp to te 
can be zero). 

g) The shape, magnitude and duration of the 
pressure profile depends on factors such as 
the characteristics of the lift charge (e.g., its 
granulation and to a lesser extent its mass), 
temperature, dead volume under the shell 
(also called loading space), the mass of the 
shell, and the size of the gap between the 
shell and mortar wall. 

h) In the Imperial (English) System of units, 
the pound unit can be either a unit of force 
or a unit of mass. To help avoid confusion, 
the abbreviation for pound force is lbf. 

i) When a force is applied to a structure, the 
response of the structure depends on wheth-
er the duration of the applied force is greater 
than or less than the resonant period of the 
structure.[2] If the duration of the applied 
force is long in comparison to the resonant 

period, the response is proportional to the 
peak force. If the duration of the applied 
force is less than the resonant period, the re-
sponse of the structure is proportional to the 
impulse delivered. Over the course of many 
measurements of pressure profiles during 
the firing of aerial shells,[1] it was found that 
the total duration of the pressure pulse in the 
mortar (i.e., the duration of the recoil force 
produced) averaged approximately 0.025 s, 
and the duration was found to be essentially 
independent of shell size. For most support-
ing structures, resonant periods are probably 
at least 10 times longer, especially for sub-
stantial (i.e., massive) structures. Thus the 
duration of mortar recoil events is much 
shorter than the resonant period of typical 
structures, and the structure’s response to 
mortar recoil will be proportional to recoil 
impulse and not peak recoil force. 

j) More correctly from a mathematical stand-
point, when pressure is not constant, impulse 
is equal to the integral of (P dt). 

k) In note g, it was mentioned that there are a 
number of factors that affect peak pressure 
and the duration of the pressure pulse. How-
ever, in terms of impulse, these factors are 
less important. This is because those things 
that tend to increase peak pressure also tend 
to decrease the duration of the pressure 
pulse, thus tending to cancel-out the overall 
effect on impulse. 

l) The impulse (I) delivered in stopping a mov-
ing object is equal to its momentum (M) 
since its final velocity is zero. Momentum is 
equal to the mass (m) of the object times it 
velocity (v). Further, mass is equal to an ob-
ject’s weight (w) divided by the acceleration 
due to gravity (g), and the velocity of an ob-
ject that is dropped is equal to the accelera-
tion due to gravity times the time (t) the ob-
ject is falling. Thus, 

 ( )
w

I M m v g t w t
g

 = = × = × = × 
 

 (2) 

The distance (h) an object will fall during a 
time interval, equals one half the accelera-
tion due to gravity times the square of the 
time during which it fell. Thus: 

 2½h g t= × ×  (3) 
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Solving for t. 

 

1/ 2

2
h

t
g

  =   
  

 (4) 

For a weight dropped from a height of 4 feet 
(1.2 m), with the acceleration due to gravity 
of 32 feet per second squared (9.8 Nm/s2), 
the time taken is ½ second. 

 
1/ 2

8
 ½ second

32
t  = = 

 
 (5) 

Thus, substituting for time (t) back into 
equation 2, the momentum (and impulse) 
produced by a weight dropped from a height 
of 4 feet (1.2 m) is numerically equal to one 
half of that weight. Drops from any other 
height can be considered in a similar fash-
ion. (For a more complete discussion consult 
any college level general physics text.) 

m) The duration of the recoil force from firing 
an aerial shell is quite short (approximately 
0.025 second, with the peak force coming 
early and lasting much less than the total du-
ration). A fairly rigid mass is specified as 
the test object because it is thought that 
dropping a fairly rigid object will generate a 
force profile somewhat similar to that of a 
shell firing. To the contrary, a non-rigid 
mass such as a sand bag may deliver the 
same impulse as that of a rigid mass, but the 
duration of force produced will be longer for 
the sand bag as its contents shift upon im-
pact. Accordingly, depending on the detailed 
nature of the supporting structure, the sand 

bag probably will not produce a stress on a 
support structure sufficiently similar to that 
of a shell firing. 

n) Subsequent to writing this article, the au-
thors found some published data on the re-
coil forces produced by large caliber spheri-
cal aerial shells. Those data were found to 
be in reasonable agreement with the esti-
mates included in this article.[4] 

o) Regarding the firing of single-break cylin-
drical shells some very limited testing sug-
gests that the mortar pressures developed are 
roughly double that of spherical shells of the 
same size. Thus as a rough approximation, 
the values given in Table 1 would need to be 
doubled for the firing of typical single-break 
cylindrical shells. 

References 

1) K. L. and B. J. Kosanke, “Peak Mortar Pres-
sures When Firing Spherical Aerial Shells”, 
Fireworks Business, No. 197, 2000; also in 
Selected Pyrotechnic Publications of K. L. 
and B. J. Kosanke, Part 5 (1998 through 
2000), Journal of Pyrotechnics, 2002. 

2) G. F. Kinney and K. J. Graham, Explosive 
Shocks in Air, 2nd ed., 1985, pp 187–189. 

3) L. Weinman, “Choked Flow, A Frequently 
Misunderstood Term”, Journal of Pyrotech-
nics, No. 19, 2004. 

4) K. L. and B. J. Kosanke, “Confirmation of 
Mortar Recoil Information”, Fireworks Busi-
ness, No. 253, 2005. 

 


